192 research outputs found

    A low-complexity time-domain linear symbol combining technique for PAPR reduction in OFDM systems

    Get PDF

    A Receiver Architecture For Dual-Functional Massive MIMO OFDM RadCom Systems

    Get PDF
    This study introduces a receiver architecture for dual-functional communication and radar (RadCom) base-stations (BS), which exploits the spatial diversity between the received radar and communication signals, and performs interference cancellation (IC) to successfully separate these signals. In the RadCom system under consideration, both communication and radar systems employ orthogonal frequency-division multiplexing (OFDM) waveforms with overlapping subcarriers. Employing OFDM waveform allows the BS to simultaneously perform uplink channel estimation on the narrow-band subcarriers to efficiently obtain full channel state information (CSI) between the users (UEs) and the BS antenna elements. The estimated CSI matrix is then utilized to acquire uplink data streams from the UEs by suppressing the inter-user interference and radar signals which arrive at the BS through unknown channels. After acquiring the UEs' data, radar signals are extracted from the received complex baseband signals by performing interference cancellation. The proposed method has been analyzed mathematically and verified by simulations under various conditions including CSI mismatch and high radar interference. The results show that 16QAM modulated uplink is outstandingly robust against radar interference and that having a large number of antennas significantly improves the performance of both communication and radar subsystems, cooperatively. This study shows that it is possible to distinguish radar and communication signals by employing large-scale antenna arrays to successfully realize a RadCom receiver for future communication networks

    Optimized Precoders for Massive MIMO OFDM Dual Radar-Communication Systems

    Get PDF
    This paper considers the optimization of a dual-functional radar and communication (RadCom) system with the objective is to maximize its sum-rate (SR) and energy-efficiency (EE) while satisfying certain radar target detection and data rate per user requirements. To this end, novel RadCom precoder schemes that can exploit downlink radar interference are devised for massive multiple-input-multiple-output (MIMO) orthogonal frequency-division multiplexing (OFDM) systems. First, the communication capacity and radar detection performance metrics of these schemes are analytically evaluated. Then, using the derived results, optimum beam power allocation schemes are deduced to maximize SR and EE with modest computational complexity. The validity of the analytical results is confirmed via matching computer simulations. It is also shown that, compared to benchmark techniques, the devised precoders can achieve substantial improvements in terms of both SR and EE

    A Dual-Functional Massive MIMO OFDM Communication and Radar Transmitter Architecture

    Get PDF
    In this study, a dual-functional radar and communication (RadCom) system architecture is proposed for application at base-stations (BSs), or access points (APs), for simultaneously communicating with multiple user equipments (UEs) and sensing the environment. Specifically, massive multiple-input multiple-output (mMIMO) communication and orthogonal frequency-division multiplexing (OFDM)-based MIMO radar are considered with the objective to jointly utilize channel diversity and interference. The BS consists of a mMIMO antenna array, and radar transmit and receive antennas. Employing OFDM waveforms for the radar allows the BS to perform channel state information (CSI) estimation for the mMIMO and radar antennas simultaneously. The acquired CSI is then exploited to predict the radar signals received by the UEs. While the radar transmits an OFDM waveform for detecting possible targets in range, the communication system beamforms to the UEs by taking into account the predicted radar interference. To further enhance the capacity of the communication system, an optimum radar waveform is designed. Moreover, the network capacity is mathematically analyzed and verified by simulations. The results show that the proposed RadCom can achieve higher capacity than conventional mMIMO systems by utilizing the radar interference while simultaneously detecting targets

    A Unified Performance Framework for Integrated Sensing-Communications based on KL-Divergence

    Get PDF
    The need for integrated sensing and communication (ISAC) services has significantly increased in the last few years. This integration imposes serious challenges such as joint system design, resource allocation, optimization, and analysis. Since sensing and telecommunication systems have different approaches for performance evaluation, introducing a unified performance measure which provides a perception about the quality of sensing and telecommunication is very beneficial. To this end, this paper provides performance analysis for ISAC systems based on the information theoretical framework of the Kullback-Leibler divergence (KLD). The considered system model consists of a multiple-input-multiple-output (MIMO) base-station (BS) providing ISAC services to multiple communication user equipments (CUEs) and targets (or sensing-served users). The KLD framework allows for a unified evaluation of the error rate performance of CUEs, and the detection performance of the targets. The relation between the detection capability for the targets and error rate of CUEs on one hand, and the proposed KLD on the other hand is illustrated analytically. Theoretical results corroborated by simulations show that the derived KLD is very accurate and can perfectly characterize both subsystems, namely the communication and radar subsystems

    On the Impact of Antenna Array Geometry on Indoor Wideband Massive MIMO Networks

    Get PDF
    Multi-user massive multiple-input-multiple-output (massive MIMO) will play a key role in future wireless communication networks. Since spatial channel diversity is the fundamental merit of this technique, high channel correlation may significantly restrict its abilities. This study investigates the impact of channel correlation on a prototyped massive MIMO network with the objective to identify an antenna array geometry which has reduced mutual coupling and channel correlation. To this end, a highly efficient directional wideband single antenna element was designed for the antenna arrays and the user equipments (UEs). The designed array geometry is tested in an experimental indoor wideband massive MIMO setup. Important system parameters, such as channel correlation, power delay profile, and average received power from the UEs, are studied by analyzing the measured channel data. Furthermore, system-level simulations and network capacity calculations are performed based on the measured channel data to evaluate the performance of the prototyped antenna arrays. A regular array was also fabricated and used for benchmarking comparison. Moreover, a power control algorithm is introduced for the uplink, which was shown to improve the network capacity by up to 3 dB. The results demonstrate that the introduced antenna array outperforms the uniform antenna array in terms of mutual coupling and channel capacity
    • …
    corecore